知识拓展练习(经典面试题) / 14. 加油站

一、题目

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

二、示例

示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

三、提示

gas.length == n
cost.length == n
1 <= n <= 10^5
0 <= gas[i], cost[i] <= 10^4

四、参考题解

1、方法一:一次遍历

(1)思路与算法

最容易想到的解法是:从头到尾遍历每个加油站,并检查以该加油站为起点,最终能否行驶一周。我们可以通过减小被检查的加油站数目,来降低总的时间复杂度。

假设我们此前发现,从加油站 x 出发,每经过一个加油站就加一次油(包括起始加油站),最后一个可以到达的加油站是 y(不妨设 x<y)。这就说明:

第一个式子表明无法到达加油站 y 的下一个加油站,第二个式子表明可以到达 y 以及 y 之前的所有加油站。

现在,考虑任意一个位于 x,y 之间的加油站 z(包括 x 和 y),我们现在考察从该加油站出发,能否到达加油站 y 的下一个加油站。

根据上面的式子,我们得到:

其中不等式的第二步、第三步分别利用了上面的第一个、第二个不等式。

从上面的推导中,能够得出结论:从 x,y 之间的任何一个加油站出发,都无法到达加油站 y 的下一个加油站。

在发现了这一个性质后,算法就很清楚了:我们首先检查第 0 个加油站,并试图判断能否环绕一周;如果不能,就从第一个无法到达的加油站开始继续检查。

//Java
class Solution {
  public int canCompleteCircuit(int[] gas, int[] cost) {
    int n = gas.length;
    int i = 0;
    while (i < n) {
      int sumOfGas = 0, sumOfCost = 0;
      int cnt = 0;
      while (cnt < n) {
        int j = (i + cnt) % n;
        sumOfGas += gas[j];
        sumOfCost += cost[j];
        if (sumOfCost > sumOfGas) {
          break;
        }
        cnt++;
      }
      if (cnt == n) {
        return i;
      } else {
        i = i + cnt + 1;
      }
    }
    return -1;
  }
}

(2)复杂度分析

时间复杂度:O(N),其中 N 为数组的长度。我们对数组进行了单次遍历。

空间复杂度:O(1)。

知识拓展练习(经典面试题)